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Abstract. The characterization of physical properties of petroleum reservoirs is the initial point
in the forecasting of the fluids flow behavior in porous media. In this subject, the simulation of
stochastic processes has an important role, by generating images of the variable, with specific
characteristics of spatial correlation and continuity. In this work we discuss relevant aspects
concerning the use of discrete Markov Random Fields and Gaussian Stochastic Processes in the
representation of rock properties in fluids reservoirs. The main point focused is the relationship
between the spatial correlation in Gaussian processes and the attraction parameter in Markov
random fields, here studied by measuring the autocorrelation parameters in binary Markov im-
ages, generated by the Metropolis algorithm. Gaussian images with Gaussian type autocorrela-
tion, after truncated in binary facies, has a correspondence to Markov images. This similarity is
validated by analysis in the autocorrelation function of the discrete Gaussian processes.
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I.  INTRODUCTION

Markov and Gaussian stochastic processes belong to the class termed point-based or
pixel-based process, that consist on the simulation of the values of the variable in each pixel of
the image. The variable focused in this work is the reservoir rock facies, represented in the net-
work by the different colors of the image.

In the use of Gaussian processes, one must assume conditions of stationarity and er-
godicity to generate random function with an expected autocorrelation function. Several methods
are used to simulate Gaussian process, extensively used in geostatistical studies, among which it
may be cited the Turning Bands method, proposed by Montoglou and Wilson (1982), the covari-
ance matrix decomposition, presented in Davis (1987a,1987b) e Alabert (1987), and the Sequen-
tial Gaussian Simulation, proposed by Journel and Alabert (1990). The simulation of discrete
variables is done by the simulation of the continuous variable, followed by a truncation of this
variable, according to a specific proportion between the facies or colors. This approach is de-



nominated Truncated Gaussian Simulation, and may be viewed in Journel and Isaaks (1984),
Journel and Posa (1990), and Galli et alii (1994) .

In the application of Markov Random Fields (MRF), the variable in a site is only related
to the points of its neighborhood. They are simulated in a sequential approach that consists on
successive exchanges in the image of the variable, according to a transition probability, that is
related to the expected value of the attraction parameter β. Most algorithms used to simulate
MRF are based in the work of Metropolis et alii (1953), and may be applied to image restoration,
as presented by Geman and Geman (1984), and texture analysis, as presented in Flinn (1974) and
Cross and Jain (1984).  The use of colored lattices may be practical to describe images of dis-
crete variables with more than two possible facies, and is proposed by Strauss (1975 and 1977).

The autocorrelation function in Gaussian processes and the attraction parameter in
Markov random fields are characteristics of continuity of the system. Starting from this motiva-
tion, the second goal of this work is to research the relationship between these parameters, and,
as a consequence, the relationship and similarity between the images generated from Markov and
Gaussian processes. This purpose is achieved by measuring the parameters of spatial correlation
observed in the images of MRF, and relating to a theoretical autocorrelation model. Visual com-
parison between the images of both process and the study of the spatial correlation of truncated
Gaussian processes is helpful to explain the observed similarities.

This paper is organized as follows. The fundamental aspects of Markov random fields are
described in next section and the simulation of binary Markov processes are presented in Section
III. In Section IV, we discuss the practical results of the experiments evaluating the spatial cor-
relation in binary Markov images, and study the relationships between Markov and Gaussian
images. Section V contains the concluding remarks.

II. MARKOV RANDOM PROCESSES

The Markov chains describe temporal sequences of random variables, governed by tran-
sition probabilities. The system “state” is represented by the value of the random variable.
Markov Random Fields (MRF) may be viewed as an extension of the Markov chains from ran-
dom variables to stochastic processes. In this case, the system “state” is represented by the spa-
tial image of the variable in an iterative sequence.

The Markov property, defined for temporal processes, is expanded for spatial processes,
and the stochastic Markov process is determined by the conditional probabilities at each point
with respect to the points of its spatial neighborhood. There are several configurations to define
this neighborhood, the most common being that of the four nearest neighbors. A process is said
to be a MRF if, for the neighborhood ∂s of each pixel s, the following relationship holds:
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Basing on the analysis of Spitzer (1971) and Geman & Geman (1884), one verifies that a
process is a MRF with respect to a neighborhood if and only if its joint probability is a Gibbs
distribution. For the known Ising model (binary MRF), the local conditional probability is cal-
culated as a function of the points of neighborhood (vi) and of the attraction parameter β:
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The relationship between the probabilities of two configurations X e X’, which allows to
establish the exchange probability, can be calculated by the equation, proposed by Besag (1974):
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This equation is rather practical and simple to implement, being helpful in algorithms of
MRF simulation and image restoration.

III. SIMULATION OF MARKOV RANDOM FIELDS

The simulation of discrete Markov processes starts from a random image upon which one
changes values at one point (single-flip) or at a couple of points (spin- exchange), according to
the transition probability between the initial and the modified images. This sequence is an exten-
sion of the Markov chains for stochastic processes, and the transition probability is related to the
joint probability to be attained by the end of the sequence.

The Metropolis algorithm, proposed by Metropolis alii (1953), is the basis for the most
sequential algorithms, and consists on a sequence of exchanges, governed by the Gibbs distribu-
tion previously presented. The stabilization at the joint specified probability, as well as the proc-
ess ergodicity, is assured in the work of Geman & Geman (1984).

The method can be used to simulate reservoir rocks, by making the assumption that the
values 0 and 1 (black and white) represent the reservoir sandstone and shale (permeable and non
permeable facies). The proportion between the facies is supposed to be known, and is kept con-
stant. Then, the passing from one image to other is done through double exchanges between two
random points in the network.

The exchange sequence stop when the global energy achieves a plateau; another valid
criterion is the stabilization of the rate of exchange (number of exchanges per iteration). Frery
(1991) presents another stopping rule, which uses the sequential estimate of the attraction pa-
rameter β; the sequence stop when the image surpasses the previously established value of β .

Figure 1 shows the stabilization of the number of exchanges and of the attraction pa-
rameter in relation to the number of iterations, for a value of the attraction β equal to 0.9. Each
iteration corresponds to a number of exchange trials equal to the number of points in the net-
work, that is, it is equivalent in quantity to a scan-type passage through the image.
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Figure 1 – Stabilization of the number of exchanges and of the attraction value, in the Metropolis
algorithm

The algorithm named Gibbs Sampler, proposed in Geman & Geman (1984), consists on
scanning the image, and sampling, pixel by pixel, a value for the variable related to its condi-
tional probability. It applies both to discrete and continuous variables, and it is useful in Baye-



sian approaches, to simulate MRF subjected to complex conditions as degraded image restora-
tion, used in Geman e Geman (1884), inequalityies conditions, used in Freulon and de Fouquet
(1993), connectivity conditions used in Allard (1994), and many others.

In present work, the images of the binary variables are generated according to the Me-
tropolis algorithm, and the sequence stop by the criterion of Frery (1991). Figure 2 shows an
example of the sequential approach. The first image on the top is the initial image generated at
random with proportion 50% between the colors; in the same figure it may be observed the im-
ages after 10 iterations (at the middle), and after 50 iterations (at the bottom).

Figure 2 – Sequential simulation of images in the Metropolis algorithm – initial image (top),
intermediate image after 10 iterations (middle) and final image after 50 iterations (base)

Some resulting images generated by this sequence are presented in Figure 3, for several
values of β, in networks of 160 x 160 pixels. It can be seen that the grater the values of β, the
greater the size of the clusters.
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Figure 3 –Images with 160x160 pixels, simulated with Metropolis algorithm for values of β in
the figure



IV. PARAMETERS OF SPATIAL CORRELATION IN MARKOV PROCESSES

The simulation of images in Gaussian processes is based on the knowledge of a second
order statistical parameter (autocorrelation, autocovariance, or semivariogram). In geostatistics it
is frequent the use of the semivariogram function γ(h) to express the spatial correlation. In sta-
tionary stochastic process, this function is related to autocovariance C(h) as:

( ) )h(Ch −= 1γ

Current models for the semivariogram are:

Gaussian model:

( ) ( )2231 ahexph −−=γ
Isotropic exponential model:

( ) ( )ahexph 31 −−=γ
Factorized exponential model:

( ) ( )ahahexph yx 331 −−−=γ

where h is the isotropic distance between two pixels, hx and hy are the distances in the main di-
rections x and y, and a is the range of the correlation.

To improve the comprehension about the properties of Markov processes, the values of
the semivariogram function were calculated for the images generated with the Metropolis algo-
rithm.

For different values of the attraction parameter β, 100 images with dimensions 160x160
pixels were generated, from which the semivariogram values were calculated at the various dis-
tances (in pixels) in the two main directions. The average values were adjusted to a known
model.
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Figure 4 – Adjusting a semivariogram model to calculated values in Metropolis images, simu-
lated with β equal to 0.3, 0.5, 0.8 and 1.0.



Figure 4 shows the adjust for β=0.3, 0.5, 0.8 and 1.0. The exponential model gives the
best adjust and the greater values of β correspond to the greater values of the parameter a.

Although the semivariograms are similar on both directions, indicating an isotropic char-
acteristic, it would be possible that the factorized exponential model were also valid, since it pre-
sents equal values on the main directions. For this reason, the semivariogram of the generated
images was investigated in the 45o and 135o directions. Results show rather close values of range
in all directions, indicating the existence of an isotropic exponential model.

Thus, the images of discrete Markov processes, defined with four-point neighborhood,
and generated by the Metropolis algorithm with double exchange, present an isotropic exponen-
tial model of spatial correlation.

A empirical relationships between the parameter β and the semivariogram for the dis-
tance of one pixel γ(1) is:
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Figure 5 – Relationship between the attraction β and the semivariogram for the distance of one
pixel γ(1) – observed values and adjusted curve

This relationship is shown in Figure 5 and may be helpful to achieve a practical relation-
ship between β and the range a of the spatial correlation.

Assuming that the semivariogram is exponential, according to the experimental data, we
have:

( ) ( )[ ]a/exp, 312501 −−=γ

Thus, the range a of the spatial correlation can be related to β as:
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This equation is represented in Figure 6, and provides a good agreement with the ob-
served values.
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Figure 6 – Relationship between parameter β and the range of the semivariogram observed in
images - observed values and empirical relationship

From these analyses, one could conclude that images generated by binary Markov proc-
esses would be similar to those generated by Gaussian processes simulated with exponential type
autocorrelation model. But it is not correct. To go deeper into the problem, it is worthwhile to
observe images simulated by both processes. In Figure 7, it is presented a Metropolis image with
β=0,8 and Gaussian images with different correlation models.

Figure 7 –Metropolis image (on the top) compared to Gaussian images with factorized exponen-
tial correlation model (left at the middle), isotropic exponential model (right at the middle),
spherical model (left at the bottom) and Gaussian model (right at the bottom)



It is evident that the Markovian image is visually similar to the Gaussian autocorrelation
image. This visual conjecture may be explained by the fact that the correlation model refers to
the continuous variable before the truncation. The relation between the semivariograms of the
continuous and discrete variable is theoretically demonstrated by Matheron (1989), and describe
the semivariogram of the truncated variable as the square root of those of the continuous vari-
able.

This behavior of the truncated variable is validated here by simulation of Gaussian proc-
ess with Gaussian correlation. The average semivariogram calculated from 100 images may be
observed in Figure 8, compared to the theoretical models.

The continuous variable with a Gaussian semivariogram (parabolic close to the origin)
creates, after the truncation, a discrete variable with a linear semivariogram close to the origin
(exponential). Thus, the images with similar visual aspect have also similar spatial correlation.

Thus, there is a correspondence between the geometric characteristics of Metropolis im-
ages and those of Gaussian processes, generated with a Gaussian correlation model to the con-
tinuous variable.

This relationship is also verified in Salomão (1998) by analyses of the flow properties,
evaluated through the parameters of the Percolation Theory, in spatially correlated process. The
percolation parameters, as the percolation threshold, are equivalent in Markov and Gaussian pro-
cess with such characteristics.
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Figure 8 – Average semivariograms observed for continuous variable and for truncated variable,
simulated by the Sequential Gaussian Simulation

V. CONCLUDING REMARKS

The attraction parameter of the binary Markov process may be related to the autocorrela-
tion parameter of the Gaussian processes since both describes the continuity of the system. The
binary Markov images are strictly similar to the truncated Gaussian images, whose continuous
variable is generated with Gaussian type autocorrelation function. These results may be justified
by the behavior of the spatial correlation of the truncated variable, and are corroborated by ex-
periments relating the flow in porous media, in stochastic images, applying the Percolation the-
ory.
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